Unpacked South Dakota State Mathematics Standards

Purpose: In order for students to have the best chance of success, standards, assessment, curriculum resources, and instruction must be aligned in focus, coherence, and rigor. Unpacked standards documents are intended to help align instruction to the focus, coherence, and rigor of the South Dakota State Mathematics Standards. The standards have been organized in clusters as they are not so much built from topics, but rather woven out of progressions. Not all content in a given grade is emphasized equally in the mathematics standards. Some clusters require greater emphasis than others based on the depth of the ideas, the time that they take to master, and/or their importance to future mathematics or the demands of college and career readiness. To say that some things have greater emphasis is not to say that anything in the standards can safely be neglected in instruction. Neglecting standards will leave gaps in student skill and understanding and may leave students unprepared for the challenges of a later grade.

Domain: Functions

A2.F.BF.A Cluster: Build a Function that Models a Relationship Between Two Quantities
Students will describe relationships between two variables, and create new functions.
**This is a MAJOR cluster. Students should spend the large majority of their time (65-85\%) on the major work of the grade. Supporting work and, where appropriate, additional work should be connected to and engage students in the major work of the grade.

A2.F.BF.A.1. Write a function that describes a relationship between two quantities. (uses modeling for all parts) a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
b. Determine an explicit expression from a graph.
c. Combine standard function types using arithmetic operations.
d. Compose functions.

Aspects of Rigor for Students: (Conceptual, Procedural, and/or Application)

A2.F.BF.A.1. Write a function that describes a relationship between two quantities. (uses modeling for all parts)
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
b. Determine an explicit expression from a graph.
c. Combine standard function types using arithmetic operations.
d. Compose functions.
$\left.\begin{array}{|l|l|l|}\hline \text { Conceptual Understanding } & \text { Procedural Fluency } & \text { Application } \\ \hline \begin{array}{l}\text { Learners will understand and explain } \\ \text { how to write a function rule from a } \\ \text { context, table, or graph. Understand } \\ \text { how to compose functions } \\ \text { (substituting in). }\end{array} & \begin{array}{c}\text { Learners will: } \\ \bullet \\ \text { Perform operations with functions }\end{array} & \begin{array}{l}\text { Simplify composite functions } \\ \text { (see examples below for notation) }\end{array}\end{array} \begin{array}{l}\text { Learners will write an equation } \\ \text { com a graphic model and verbal }\end{array}\right]$

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.

- Students will be able to see patterns and be able to create function rules from those patterns.

3. Construct viable arguments and critique the reasoning of others.

- Students will explain the process they used to build a new function.

4. Model with mathematics.

- Students will be able to build functions using context.

5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Vertical and Horizontal Coherence and Learning Progressions

Vocabulary (key terms and definitions)

- Composition

Relevance, Explanations, and Examples:

Notation for operations and simplifying functions:

$$
\begin{gathered}
f(x)+g(x)=(f+g)(x) \\
f(x)-g(x)=(f-g)(x) \\
f(x) \cdot g(x)=(f g)(x) \\
f(x) \div g(x)=\left(\frac{f}{g}\right)(x) \\
f(g(x))=(f \circ g)(x)
\end{gathered}
$$

Example of Using Composition of Functions to Verify Inverses Below.

Determine algebraically whether
$f(x)=\frac{1}{2} x+\frac{3}{2} \xi_{i} g(x)=2 x-3$ are inverses
Find $f(g(x)) \Rightarrow f(x)=\frac{1}{2} x+\frac{3}{2}$

$$
\begin{aligned}
& f\left(g(x)=\frac{1}{2}(g(x))+\frac{3}{2}\right. \\
& f(2 x-3)=\frac{1}{2}(2 x-3)+\frac{3}{2} \\
& f(2 x-3)=x-\frac{3}{2}+3 / 2 \\
& f(2 x-3)=x \\
& f(g(x))=x \square
\end{aligned}
$$

Find $g(f(x)) \Rightarrow$

$$
\begin{aligned}
& g(x)=2 x-3 \\
& g(f(x))=2(f(x))-3 \\
& g(1 / 2 x+3 / 2)=2\left(1 / 2 x+\frac{3}{2}\right)-3 \\
& g(1 / 2 x+3 / 2)=x+3-3 \\
& g(1 / 2 x+3 / 2)=x \\
& g(f(x))=x \square
\end{aligned}
$$

Because $f(g(x))=x=g(f(x)), f(x)$ and $g(x)$
are inverses.
Note that above, $f\left(f^{-1}(x)\right)=x$.was used in reference to verifying inverses instead of using $f(g(x))=x$ and $g(f(x))=x$.

Achievement Level Descriptors

Cluster: Building New Functions from Existing Functions

Concepts and Procedures
Level 1: Students should be able to base arguments on concrete referents such as objects, drawings, diagrams, and actions and identify obvious flawed arguments in familiar contexts.

Level 2: Students should be able to find and identify the flaw in an argument by using examples or particular cases. Students should be able to break a familiar argument given in a highly scaffolded situation into cases to determine when the argument does or does not hold.

	Level 3: Students should be able to use stated assumptions, definitions, and previously established results and examples to test and support their reasoning or to identify, explain, and repair the flaw in an argument. Students should be able to break an argument into cases to determine when the argument does or does not hold.
	Level 4: Students should be able to use stated assumptions, definitions, and previously established results to support their reasoning or repair and explain the flaw in an argument. They should be able to construct a chain of logic to justify or refute a proposition or conjecture and to determine the conditions under which an argument does or does not apply.

