Unpacked South Dakota State Mathematics Standards

Purpose: In order for students to have the best chance of success, standards, assessment, curriculum resources, and instruction must be aligned in focus, coherence, and rigor. Unpacked standards documents are intended to help align instruction to the focus, coherence, and rigor of the South Dakota State Mathematics Standards. The standards have been organized in clusters as they are not so much built from topics, but rather woven out of progressions. Not all content in a given grade is emphasized equally in the mathematics standards. Some clusters require greater emphasis than others based on the depth of the ideas, the time that they take to master, and/or their importance to future mathematics or the demands of college and career readiness. To say that some things have greater emphasis is not to say that anything in the standards can safely be neglected in instruction. Neglecting standards will leave gaps in student skill and understanding and may leave students unprepared for the challenges of a later grade.

Domain: Functions

Grade Level: Algebra 2

A2.F.LE.A Cluster: Construct and compare linear and exponential models and solve
Learners will be able to go back and forth between an exponential model and logarithmic model and know when one model may be more useful than another one to solve problems in context.
**This is a SUPPORTING cluster Students should spend the large majority of their time (65-85\%) on the major work of the grade. Supporting work and, where appropriate, additional work should be connected to and engage students in the major work of the grade.

A2.F.LE.A. 4 For exponential models, express as a logarithm the solution to $a b^{(c t)}=d$ where $\boldsymbol{a}, \boldsymbol{c}$, and \boldsymbol{d} are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology. (Uses modeling)

Aspects of Rigor for Students: (Conceptual, Procedural, and/or Application)

A2.F.LE.A. 4 For exponential models, express as a logarithm the solution to $a b^{(c t)}=d$ where $\mathbf{a}, \boldsymbol{c}$, and dare numbers and the base b is 2,10 , or e; evaluate the logarithm using technology. (Uses modeling)

Conceptual Understanding	Procedural Fluency	Application
Learners understand how an exponential model and logarithmic model relate (are inverses and can be rewritten in the other form).	Learners are able to: evaluate logarithmic expressions (both with and without technology). rewrite exponential models in logarithmic form.	Learners can apply the concept of logarithms to solve contextual problems
Enacting the Mathematical Practices - Evidence of Students Engaging in the Practices Scale, decibels, etc.		

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.

- Students will be able to apply concepts of logarithms to problems in context.

5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.

- Students will be able to write a logarithmic model given an exponential model and vice versa.

8. Look for and express regularity in repeated reasoning.

