Unpacked South Dakota State Mathematics Standards

Purpose: In order for students to have the best chance of success, standards, assessment, curriculum resources, and instruction must be aligned in focus, coherence, and rigor. Unpacked standards documents are intended to help align instruction to the focus, coherence, and rigor of the South Dakota State Mathematics Standards. The standards have been organized in clusters as they are not so much built from topics, but rather woven out of progressions. Not all content in a given grade is emphasized equally in the mathematics standards. Some clusters require greater emphasis than others based on the depth of the ideas, the time that they take to master, and/or their importance to future mathematics or the demands of college and career readiness. To say that some things have greater emphasis is not to say that anything in the standards can safely be neglected in instruction. Neglecting standards will leave gaps in student skill and understanding and may leave students unprepared for the challenges of a later grade.

Domain: Seeing Structure in Expression

Grade Level: Algebra I

A1.A.SSE.B Cluster: Write expressions in equivalent forms to solve problems
Rewrite quadratic functions in different forms to show the zeros or maximum/minimum value by factoring or completing the square. Rewrite exponential functions using properties of exponents.
**This is a MAJOR cluster. Students should spend the large majority of their time ($65-85 \%$) on the major work of the grade. Supporting work and, where appropriate, additional work should be connected to and engage students in the major work of the grade.
A.SSE.B. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
a. Factor a quadratic expression to reveal the zeros of the function it defines.
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
c. Use the properties of exponents to write equivalent expressions for exponential functions.

Aspects of Rigor for Student Learning: (Conceptual, Procedural, and/or Application)
A.SSE.B. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
a. Factor a quadratic expression to reveal the zeros of the function it defines.

Conceptual Understanding	Procedural Fluency	Application
Understand a quadratic function can be factored to find zeros.	Factor a quadratic expression. Identify the zeros of a quadratic function. Note: This standard pairs with F.IF.8a	
A.SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.		
Conceptual Understanding Procedural Fluency Application Understand a quadratic function can be written in vertex form (completing the square) to find the maximum or minimum value. Rewrite a quadratic function in vertex form by completing the square.	Identify the maximum or minimum of a quadratic function.	

	Note: This standard pairs with F.IF.8a	
A.SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. c. Use the properties of exponents to write equivalent expressions for exponential functions.		
Conceptual Understanding	Procedural Fluency	Application
Understand the properties of exponents can be applied to exponential functions.	Rewrite exponential functions using properties of exponents.	
Enacting the Mathematical Practices - Evidence of Students Engaging in the Practices		

Cluster: Write expressions in equivalent forms to solve problems
\(\left.$$
\begin{array}{|l|l|}\hline \text { Concepts and Procedures } & \begin{array}{l}\text { Level 1: } \\
\text { Students should be able to write a quadratic expression with integer } \\
\text { coefficients and a leading coefficient of } 1 \text { in an equivalent form by factoring. } \\
\text { They should be able to use properties of exponents to expand a single variable } \\
\text { (coefficient of 1) with a positive integer exponent into an equivalent form and } \\
\text { vice versa, e.g., } x^{3}=\text { xxx. }\end{array} \\
\hline & \begin{array}{l}\text { Level 2: } \\
\text { Students should be able write a quadratic expression with integer coefficients } \\
\text { in an equivalent form by factoring or by completing the square. They should be } \\
\text { able to use properties of exponents to expand a repeated single variable } \\
\text { (coefficient of 1) with a nonnegative integer exponent into an equivalent form } \\
\text { and vice versa, e.g., } x^{0} x^{2} x^{3}=x x x x x=x^{2+3} .\end{array} \\
\hline & \begin{array}{l}\text { Level 3: } \\
\text { Students should be able to write a quadratic expression with rational } \\
\text { coefficients in an equivalent form by factoring and by completing the square. } \\
\text { They should be able to identify and use the zeros to solve or explain familiar } \\
\text { problems, and they should be able to use properties of exponents to write } \\
\text { equivalent forms of exponential functions with one or more variables, integer } \\
\text { coefficients, and nonnegative rational exponents involving operations of } \\
\text { addition, subtraction, and multiplication, including distributing an exponent } \\
\text { across terms within parentheses. }\end{array} \\
\hline & \begin{array}{l}\text { Level 4: }\end{array}
$$

\hline Students should be able to find the maximum or minimum values of a quadratic

function. They should be able to choose an appropriate equivalent form of an

expression in order to reveal a property of interest when solving problems.\end{array}\right\}\)| |
| :--- |

