

Middle School Mechatronics/Robotics

Career Cluster	STEM
Course Code	21049
Prerequisite(s)	None
Credit	.5
Program of Study and	Foundational Courses, Cluster Courses, Pathway Courses, Capstone Experience
Sequence	
Student Organization	FIRST Lego League and FIRST Tech Challenge
Coordinating Work-Based	tours of local businesses with robotics
Learning	virtual tours of industrial robots
	http://highered.mheducation.com/sites/dl/free/0078308291/223250/robot.html
Industry Certifications	None
Dual Credit or Dual	None
Enrollment	
Teacher Certification	STEM Cluster Endorsement; 7-12 Technology Education Endorsement
Resources	

Course Description:

Middle School Robotics/Mechatronics course allows students to develop an understanding of how robots function, their applications, and how to program them to perform specified tasks.

Program of Study Application

This course is a STEM Cluster course, which may be followed by the STEM Pathway course of Mechatronics/Robotics, followed by a Senior Capstone course.

Career Cluster: STEM

Course: Middle School Mechatronics/Robotics

Course Standards

Indicator # MSMR 1 Understand the components that make up a robot

Webb Level	Sub-indicator	Integrated Content
Two	MSMR 1.1. Know the equipment used in robotics	
Skill/	Example:	
Concept	Identify types of electronic sensors.	
	Explain various functions of motors.	
	Explain the role of a computer as a robotic control device.	
Two	MSMR 1.2. Identify various mechanical systems used in robotics	Science
Skill/	Example:	
Concept	Describe a belt and pulley speed reduction system.	
	Recognize the importance and application of mechanical	
	advantages.	
Three	MSMR 1.3. Demonstrate the use of programming commands	Computer Coding
Strategic	Example:	
Thinking	Compile a program to demonstrate a robotic "dance."	
	Develop a program to move a robot along a particular path.	

Notes:

Career Cluster: STEM

Course: Middle School Mechatronics/Robotics

Indicator # MSMR 2 Investigate the impact of robotics on our society

Webb Level	Sub-indicator	Integrated Content
Three	MSMR 2.1. Compare and contrast robotics labor vs. human labor	
Strategic	Example:	Social Science
Thinking	Explain the economic advantages/disadvantages of robotic labor.	
	Evaluate the decision of hiring 4 humans vs. 1 robot to do the same	
	job.	
Two	MSMR 2.2. Explore career outlook for robotic applications	
Skill/	Example:	Career Development
Concept	Identify jobs that will be created/eliminated by robotics.	
	Predict potential robotics related careers.	
Two	MSMR 2.3. Explore new entrepreneurial opportunities using robotics	
Skill/	Example:	
Concept	Discuss a fictitious business venture utilizing robotic labor.	
	Identify a business that could be improved using a robotic system.	

Notes:

Career Cluster: STEM

Course: Middle School Mechatronics/Robotics

Indicator # MSMR 3 Design a robot to solve a particular problem

Webb Level	Sub-indicator	Integrated Content	
Three	MSMR 3.1. Identify robotic applications	Soft Skills:	
Strategic	Example:	communication,	
Thinking	 In group discussion, consider the application of robotics. 	team-work,	
	Draw a robot. Present the drawings and discuss the various	presentation	
	differences in the drawings.		
Four	MSMR 3.2. Propose a robotic design		
Extended	Example:	Soft Skills:	
thinking	 Sketch a diagram of a robot that completes a task; e.g. disk jockey, trash collector, welder, transporter, etc. 	presentation	
	Present an idea to the class of how a robot can make your quality		
	of life better.		
Four	MSMR 3.3. Construct a functional robot.		
Extended	Example:		
thinking	Build a Lego robot.		
	Use an Erector set to construct a robot.		
	Use a VEX set to construct a robot.		
Four	MSMR 3.4. Program a robot to perform a specific task.		
Extended	Example:		
thinking	Write and upload a program to navigate a robot through a maze.	Computer Coding	
	Write a program to make a robot follow a line.		
Four	MSMR 3.5. Evaluate robot programming		
Extended	Example:		
thinking	Record data on the precision of a program that operates a robot.		
	Analyze inconsistencies in the completion of a particular repetitive		
	task performed by a robot.		

Notes: