Rationale Statement:

The world is full of problems that need to be solved or that need a program to solve them faster. In computer, programming students will learn how to solve story problems and develop a computer program that will solve the problem. Computer programming courses in the state of South Dakota usually are taught using one of three computer languages: Visual Basic, C++, or Java. Students that are interested in the Programming and Software Development pathway will find that taking a computer-programming course in high school will better prepare them for post-secondary work in computer science, engineering, mathematics, and other software development areas.

Course Description:
Grade Level: 10-12

Course Topics:

- Introduction to programming history and the programming language
- Understanding the information processing cycle
- Customer needs analysis for designing a program
- Defining and designing the program project
- Coding an application
- Creating, debugging, and documenting a software application

NOTE: The core technical standards and examples are designed for a Programming 1 and Programming 2 Course.
<table>
<thead>
<tr>
<th>Bloom’s Taxonomy Level</th>
<th>Standard and Examples</th>
</tr>
</thead>
</table>
| **Analyzing** | **VBP 1.1 Gather data to identify customer requirements.**
Examples:
- Gather information using interviewing strategies.
- Identify input, output and system processing requirements.
- Clarify specifications using questioning techniques.
- Identify hardware, networking, and software system functional requirements.
- Demonstrate knowledge of nonfunctional requirements.
- Use customer satisfaction in determining product characteristics. |
| **Applying** | **VBP 1.2 Demonstrate knowledge of programming language concepts.**
Examples:
- Demonstrate knowledge of the concept of physical representation of digitized information.
- Demonstrate knowledge of the hardware-software connection.
- Demonstrate knowledge of the function and operation of compilers and interpreters.
- Demonstrate knowledge of current key programming languages and the environment they are used in. |
| **Evaluating** | **VBP 1.3 Develop software requirements specification.**
Examples:
- Demonstrate knowledge of the use, structure, and contents of a requirements specification document.
- Define system and software requirements.
- Define business problem to be solved by the application
- Develop informal specifications.
- Develop formal specification.
- Review and verify specification with customer. |
Indicator #2: Produce IT-based strategies and project plans to solve the problem.

<table>
<thead>
<tr>
<th>Bloom’s Taxonomy Level</th>
<th>Standard and Examples</th>
</tr>
</thead>
</table>
| **Understanding** | VBP 2.1 Define scope of work for the programming project.
Examples:
- Demonstrate knowledge of the key functions and subsystems of the software product.
- Demonstrate knowledge of software development process and issues.
- Develop implementation plan. |
| **Applying** | VBP 2.2 Demonstrate knowledge and skills of working in a software development team.
Examples:
- Identify resources and risks.
- Demonstrate knowledge of cross-functional team structures and team members’ roles. |
<table>
<thead>
<tr>
<th>Bloom’s Taxonomy Level</th>
<th>Standard and Examples</th>
</tr>
</thead>
</table>
| **Understanding** | VBP 3.1 Demonstrate knowledge of software development methodology. Examples:
- Demonstrate knowledge of system analysis issues related to design, testing, implementation, and maintenance.
- Identify roles on team members/customers in the software development process.
- Demonstrate knowledge of how to use software methodologies to analyze a real-world problem.
- Identify constraints of the current project.
- Demonstrate knowledge of modeling and analyzing functional requirements (e.g., dataflow diagrams, process specifications, and a data dictionary).
- Demonstrate knowledge of modeling and analyzing data requirements (e.g., Jackson diagrams, entity relationship diagrams, and relations). |
| **Applying** | VBP 3.2 Apply tools for developing software applications. Examples:
- Demonstrate knowledge of software development environment.
- Use prototyping techniques.
- Use desk checking
- Demonstrate knowledge of reuse and components. |
| **Applying** | VBP 3.3 Apply language specific programming tools/techniques. Examples:
- Develop programs using appropriate language.
- Make use of appropriate development environment for the selected language. |
Indicator #4: Create a logical design for a software application.

<table>
<thead>
<tr>
<th>Bloom’s Taxonomy Level</th>
<th>Standard and Examples</th>
</tr>
</thead>
</table>
| **Evaluating** | **VBP 4.1 Create design specification for a computer application.**
 | Examples:
 | • Analyze real world problems for the applicability of structured, object oriented, event-driven logical design methods.
 | • Design system input, output, processing, and interfaces. |
| **Applying** | **VBP 4.2 Analyze real world problems for the applicability of structured, object orientate, even driven logical design methods.**
 | Examples:
 | • Demonstrate knowledge of the characteristics and the uses of processing
 | • Identify basic concepts of algorithm and data structure development.
 | • Demonstrate knowledge of different data types
 | • Identify constraints.
 | • Demonstrate knowledge of nonfunctional requirements
 | • Demonstrate knowledge of modular design concepts.
 | • Demonstrate knowledge of how to design and implement programs in a top-down manner.
 | • Analyze and prepare logic using program flowchart.
<pre><code> | • Identify standards and issues related to I/O programming and design of I/O interfaces. |
</code></pre>
<table>
<thead>
<tr>
<th>Bloom’s Taxonomy Level</th>
<th>Standard and Examples</th>
</tr>
</thead>
</table>
| **Applying** | **VBP 5.1 Demonstrate knowledge of programming language concepts.**
Example:
- Demonstrate knowledge of the basics of structured, object-oriented, and event-driven programming.
- Demonstrate knowledge of the concepts of data and procedural representation. |
| **Applying** | **VBP 5.2 Develop an application using selected programming language.**
Example:
- Translate logical design into code in an appropriate language argument.
- Demonstrate knowledge of specific language syntax. |
| **Evaluating** | **VBP 5.3 Demonstrate knowledge of basic software systems implementation.**
Example:
- Compile and debug code.
- Prepare code documentation.
- Conduct code walkthrough and/or inspection.
- Troubleshoot unexpected results.
- Access needed information using company and manufacturers' references. |